Последнее обновление: 2022-03-02 14:02:02
Среднее квадратическое отклонение характеризует разброс значений относительно среднего (математического ожидания).
Среднеквадратическое отклонение — статистическая характеристика распределения случайной величины, показывающая среднюю степень разброса значений величины относительно математического ожидания. Обозначается греческой σ (сигма) или буквой S.
Среднеквадратичное отклонение - это стандартное отклонение на основании несмещенной оценки дисперсии, которое отличается от стандартного отклонения на основании смещенной оценки дисперсии, т. е.27 июн. 2017 г.
Среднеквадратическое отклонение используют при расчёте стандартной ошибки среднего арифметического, при построении доверительных интервалов, при статистической проверке гипотез, при измерении линейной взаимосвязи между случайными величинами.
Дисперсия определяется как среднее квадратов отклонений от среднего значения. Стандартное отклонение - это положительный квадратный корень дисперсии.1 мая 2019 г.
Чем меньше значение дисперсии и среднего квадратического отклонения, тем однороднее совокупность и тем более типичной будет средняя величина. В практике статистики часто возникает необходимость сравнения вариаций различных признаков.
Среднее квадратическое отклонение равно квадратному корню из среднего квадрата отклонений отдельных значений признака от средней арифметической.
Вариа́ция — различие значений какого-либо признака у разных единиц совокупности за один и тот же промежуток времени. Причиной возникновения вариации являются различные условия существования разных единиц совокупности. Вариация — необходимое условие существования и развития массовых явлений.
Стандартное отклонение используют для анализа наборов значений. Иногда два набора с одинаковым средним значением могут оказаться совершенно разными по разбросу величин.6 сент. 2017 г.